
LoanPro provides flexibility and automation to optimize underwriting, servicing, and collections efficiency for

almost any type of loan or credit product. This flexibility enables lenders to take products, hardship programs,

servicing solutions, and more to market quicker, an advantage in the competitive marketplace, while offering the

agility to provide a better customer experience.

LoanPro automations make it easier to keep loans up to date, process payments, send custom communications,

and complete lending processes. While the automated actions themselves are extremely important, maximum

flexibility requires a robust method of creating the rules that define when automations will occur. LoanPro chose

Clojure as the flexible, powerful, secure way to write these rules.

Flexible rule-based
lending automation
using Clojure
Automation to optimize operations

2

Why Clojure?

Consistency

With so many options available for automation and system rules, you might ask why LoanPro chose

Clojure. LoanPro could have created their own rules language or chosen a more mainstream language

like Python. At LoanPro, we considered many options, and ultimately chose to use Clojure for these

key reasons:

Clojure is consistent because of its

predictable structure and data immutability

Clojure is performant

Clojure provides all the functionality needed

to create both simple and complex rules

Clojure has a simple core for ease of

learning and use

Clojure rules can be executed securely

within the LoanPro platform

Clojure is a standout choice for consistency and predictability, thanks to its functional paradigm and

immutability at the core. Clojure syntax is kept at a minimum, so it’s very easy to explain the core set

of rules needed to write Clojure code. Because there is immutability at the core, there are no cases

when an instruction inadvertently mutates a collection, preventing the creation of subtle, difficult to

detect bugs.

Clojure performance
When choosing the technology for automation rules, it was important that encoded rule instructions

execute quickly. To correctly determine when automations should run, LoanPro evaluates tens of

millions of rules daily. The wrong technology choice would have significantly increased the time these

evaluations required, hindering customer use of the LoanPro platform. Clojure provides the required

speed so rule evaluations and related automations occur in a timely way, ensuring that loans, leases,

and lines of credit are always up to date.

While Clojure isn’t the fastest programming language, it strikes a good balance between

performance, ease of use, consistency, and security. For example, rules written in Go might be faster,

but would be more difficult to serialize and evaluate securely.

3

Complex rules

The chart below shows Clojure speed, based on benchmarks, relative to other popular web

languages (lower scores are faster).

With over 600 customers, rules are required

to do some complex things, like only run an

automation on the last Friday of every month,

or only on loans that are more than six months

old that have had at least two payments.

LoanPro is able to accommodate these and

other complex rules without the need to

put lenders on hold in order to develop new

rule capabilities. And, thanks to Clojure’s

functional programming paradigm coupled with

immutability at the core, complex rules can be

run with consistent outputs.

Using Clojure to create complex rules has

empowered LoanPro lenders to send the right

communications and make loan updates for the

right audiences at the right times, increasing

collections success and lowering servicing time

and collections costs. Employing powerful,

configurable automations, LoanPro lenders

have increased their loan-to-agent ratio by as

much as 300%.

Core simplicity
Clojure provides simple, core functionality. Core functions of Clojure don’t often change, with a

remarkable track record of code stability and backwards compatibility. This stability translates to

stable LoanPro rules that keep working as intended, regardless of system updates. As a standalone

language, Clojure may already be familiar, potentially saving significant training time. Lots of

documentation already exists for Clojure at the depth required to teach anyone how to create simple

or complex rules.

Clojure is REPL-driven, so many training and testing tools are available in addition to simple

documentation, which provide a more interactive experience, rules testing, and a community of

users to answer questions and offer expertise. These available tools will lower the time and cost of

training and help lenders create their own subject matter experts.

Language

80

60

40

20

0B
en

ch
m

ar
k

ti
m

e

C++ C#.NET Go Clojure Node PHP Erlang Ruby Python Perl

Language benchmark speed (lower is faster)

4

Security
Security is a top priority at LoanPro. We maintain SOC 2 Type II, PCI-DSS level one, and ISO-27001

security certifications. When evaluating rules technology, it was extremely important not to

introduce vulnerabilities, especially when evaluating untrusted code. Clojure was chosen because

custom Clojure code can be executed by LoanPro with a significantly lower risk. Clojure code is

stored as text within the LoanPro platform, and sent to a secure interpreter that runs outside of

LoanPro’s primary servers for execution.

Configurable automations provide a large advantage to LoanPro lenders, by allowing them

to quickly go to market with new products and programs, while minimizing training and

maximizing efficiency. To make automations as effective as possible, rules that trigger

automations must execute quickly, be configurable to meet precise needs, and execute

securely. When choosing the rule-creation technology, LoanPro considered other options,

including building our own domain-specific language. Clojure was chosen, because it met the

needs for security, performance, ease of use, and consistency.

Conclusion

