-lexiple rule-basec
enaing automation
using Clojure

Automation to optimize operations

LoanPro provides flexibility and automation to optimize underwriting, servicing, and collections efficiency for
almost any type of loan or credit product. This flexibility enables lenders to take products, hardship programs,
servicing solutions, and more to market quicker; an advantage in the competitive marketplace, while offering the
agility to provide a better customer experience.

LoanPro automations make it easier to keep loans up to date, process payments, send custom communications,
and complete lending processes. While the automated actions themselves are extremely important, maximum
flexibility requires a robust method of creating the rules that define when automations will occur. LoanPro chose
Clojure as the flexible, powerful, secure way to write these rules.

Why Clojure”

With so many options available for automation and system rules, you might ask why LoanPro chose
Clojure. LoanPro could have created their own rules language or chosen a more mainstream language
like Python. At LoanPro, we considered many options, and ultimately chose to use Clojure for these
key reasons:

& Clojure is consistent because of its & Clojure has a simple core for ease of
predictable structure and data immutability learning and use
& Clojure is performant & Clojure rules can be executed securely

within the LoanPro platform
& Clojure provides all the functionality needed

to create both simple and complex rules

Consistency

Clojure is a standout choice for consistency and predictability, thanks to its functional paradigm and
immutability at the core. Clojure syntax is kept at a minimum, so it’s very easy to explain the core set
of rules needed to write Clojure code. Because there is immutability at the core, there are no cases
when an instruction inadvertently mutates a collection, preventing the creation of subtle, difficult to
detect bugs.

Clojure performance

When choosing the technology for automation rules, it was important that encoded rule instructions
execute quickly. To correctly determine when automations should run, LoanPro evaluates tens of
millions of rules daily. The wrong technology choice would have significantly increased the time these
evaluations required, hindering customer use of the LoanPro platform. Clojure provides the required
speed so rule evaluations and related automations occur in a timely way, ensuring that loans, leases,
and lines of credit are always up to date.

While Clojure isn’t the fastest programming language, it strikes a good balance between
performance, ease of use, consistency, and security. For example, rules written in Go might be faster,
but would be more difficult to serialize and evaluate securely.

The chart below shows Clojure speed, based on benchmarks, relative to other popular web
languages (lower scores are faster).

Language benchmark speed (lower is faster)

80
£
] 60
x
S 40
£
S
B l .
E) e wm m om

C++ C#NET Go Clojure Node PH Erlang Ruby Python Perl
Language

Complex rules

With over 600 customers, rules are required Using Clojure to create complex rules has

to do some complex things, like only run an empowered LoanPro lenders to send the right
automation on the last Friday of every month, communications and make loan updates for the
or only on loans that are more than six months right audiences at the right times, increasing
old that have had at least two payments. collections success and lowering servicing time
LoanPro is able to accommodate these and and collections costs. Employing powerful,
other complex rules without the need to configurable automations, LoanPro lenders

put lenders on hold in order to develop new have increased their loan-to-agent ratio by as
rule capabilities. And, thanks to Clojure’s much as 300%.

functional programming paradigm coupled with
immutability at the core, complex rules can be

run with consistent outputs.

Core simplicity

Clojure provides simple, core functionality. Core functions of Clojure don’t often change, with a
remarkable track record of code stability and backwards compatibility. This stability translates to
stable LoanPro rules that keep working as intended, regardless of system updates. As a standalone
language, Clojure may already be familiar, potentially saving significant training time. Lots of
documentation already exists for Clojure at the depth required to teach anyone how to create simple

or complex rules.

Clojure is REPL-driven, so many training and testing tools are available in addition to simple
documentation, which provide a more interactive experience, rules testing, and a community of

users to answer questions and offer expertise. These available tools will lower the time and cost of
training and help lenders create their own subject matter experts. 3

Security

Security is a top priority at LoanPro. We maintain SOC 2 Type Il, PCI-DSS level one, and ISO-27001
security certifications. When evaluating rules technology, it was extremely important not to
introduce vulnerabilities, especially when evaluating untrusted code. Clojure was chosen because
custom Clojure code can be executed by LoanPro with a significantly lower risk. Clojure code is
stored as text within the LoanPro platform, and sent to a secure interpreter that runs outside of

LoanPro’s primary servers for execution.

